## **Detection and Identification of Living Modified Organisms**



# V. Siva Reddy International Centre for Genetic Engineering and Biotechnology

22<sup>nd</sup> November 2011 (cbd/MoEF workshop)

#### Talk will cover:

Methods of genetic transformation
Basic features of gene constructs
Current Global scenario
Current Indian Scenario
Detection strategies
DNA based
Protein based
LMO detection: Lab set up and equipment required



# Introduction of foreign genes and creation of GMO/LMO







## **Methods of Plant Transformation**

- Agrobaterium
- Gene gun
- Electroporation
- PEG up take method
- Microinjection
- Pollen tube path way
- Liposome mediated
- Viral vectors
- Apical meristem method
- Vacuum infiltration method



# Genetic Engineering is an Extension of Traditional Plant Breeding

#### TRADITIONAL PLANT BREEDING

DNA is a strand of genes, much like a strand of pearls. Traditional plant breeding combines many genes at once.



# Agrobactrium mediated transformation of tobacco Co-cultivation and selction





# Gene gun Particle delivery system (PDS) He 1000







# **Electroporation of plant cells (protoplasts) with recombinant DNA**

#### **Tobacco leaf protoplasts expressing GFP (Transient assay)**







# **Transformation of DNA through microinjection**



# **Basic transformation gene construct**





# Wide range of crops

| 16 Field Crops | 14 Vegetables | 16 Fruits  | 11 other crops |
|----------------|---------------|------------|----------------|
| Alfalfa        | Broccoli      | Apple      | Chicory        |
| Barley         | Cabbage       | Banana     | Cocoa          |
| Canola         | Carrot        | Cantaloupe | Coffee         |
| Cassava        | Cauliflower   | Cherry     | Garlic         |
| Clover         | Cucumber      | Citrus     | Lupins         |
| Cotton         | Eggplant      | Coconut    | Mustard        |
| Flax           | Lettuce       | Grape      | Oil Palm       |
| Maize          | Onion         | Kiwi       | Oilseed Poppy  |
| Rice           | Pea/Bean      | Mango      | Olive          |
| Safflower      | Pepper        | Melon      | Peanut         |
| Sorghum        | Potato        | Papaya     | Tobacco        |
| Soybean        | Spinach       | Pineapple  |                |
| Sugar Beet     | Squash        | Plum       |                |
| Sugar Cane     | Tomato        | Raspberry  |                |
| Sunflower      |               | Strawberry |                |
| Wheat          |               | Watermelon |                |

#### GLOBAL AREA OF BIOTECH CROPS Million Hectares (1996-2010)



A record 15.4 million farmers, in 29 countries, planted 148 million hectares (365 million acres) in 2010, a sustained increase of 10% or 14 million hectares (35 million acres) over 2009.

Source: Clive James, 2010.



# Global Adoption Rates (%) for Principal Biotech Crops (Million Hectares, Million Acres), 2010





Source: Clive James, 2010



### **Commercial Release of Bt Cotton Events in India, 2002 to 2010**

| No. Crop                                                                  | Event                                                                                 | Developer                                                                                                            | Status                                                                                 | Year of<br>Approval  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|
| <ul><li>2 Cotto</li><li>3 Cotto</li><li>4 Cotto</li><li>5 Cotto</li></ul> | n* MON-531<br>n* MON-1598<br>n* Event-1<br>n* GFM Event<br>n**BNLA-601<br>n* MLS-9124 | Mahyco/Monsanto  Mahyco/Monsanto  JK Agri-Genetics  Nath Seeds  CICR (ICAR) & UAS,  Dharwa  Metahelix Life  Sciences | Commercialized<br>Commercialized<br>Commercialized<br>Commercialized<br>Commercialized | 2006<br>2006<br>2006 |

<sup>\*</sup>Bt cotton hybrid; \*\* Bt cotton variety and Bt cotton hybrid



#### **Insect resistance: Bt toxins**



Figure 1. Cryproteins have diverse properties but highly conserved structure. A: A phylogenetic tree based on ClustalWalignment using Phylogeny Interference Package (version 3.5c). Only (putative) domains I-III were used in these comparisons. Colors indicate known susceptible organisms: blue, Diptera; green, Lepidoptera; red, Coleoptera; magenta, nematodes. B: Three-dimensional structures of Cry1Aa (left), Cry2Aa (middle) and Cry3Aa (right) drawn using MOLSCRIPT. Toxin domains I, II and III colored red, green and blue, respectively.



# Cotton hybrid seeds – Non GM





# Cotton hybrid seeds – GM Bt. Cotton





# Cotton hybrid seeds mixed up with GM Bt. Cotton





# Central Dogma: GMO detection





# LMO detection: Lab set up and equipment required

**Detection: DNA based** 







**Detection: Protein based** 











doi:10.1038/nprot.2007.440 Published online 23 October 2007



# ELISA/Strip based detection require specific antibodies that recognize the foreign protein Antibodies: Monoclonal antibody production scheme





## Strip based detection: Basic principles involved

- •Several detection strips are available in the market to detect the same LMO
- •Single strip can detect multiple events





#### Lateral Flow Assay Architecture



# **Strip test or Later flow test**





# **Direct ELISA based detection**





## Sandwich based ELISA





#### **HRP Substrate TMB Solutions for ELISA**

TMB solutions are chromogenic reagents for peroxidase, designed for ELISA techniques, manual or automatic systems. They contain 3,3',5,5'-tetramethylbenzidine (TMB), hydrogene peroxide (H2O2), and proprietary catalyzing and stabilizing agents. Reaction with peroxidase develops an intense blue colour that can be read directly (at 650nm), or a deap yellow colour (read at 450 nm) after stop with an acid solution. Sensitivity is greater than classic substrates like OPD and ABTS, with very low background..





# Detection thresholds of three transgenic maize events

CP4-EPSPS protein can be detected with high sensitivity in mixtures with low percentage of transgenic maize.

| % maíz<br>NK603  | 0.05% | 0.10% | 0.25% | 0.50% | 1.0% |
|------------------|-------|-------|-------|-------|------|
| A <sub>620</sub> | 0.122 | 0.186 | 0.683 | 0.958 | 1.18 |

#### Sensitivity for detection of CRY proteins is much lower.

| % de Maíz                  | 0.05% | 0.10% | 0.25% | 0.50% | 1.0%  |
|----------------------------|-------|-------|-------|-------|-------|
| MON810 (A <sub>620</sub> ) | 0.06  | 0.058 | 0.064 | 0.069 | 0.086 |
| Bt11 (A <sub>620</sub> )   | 0.064 | 0.073 | 0.104 | 0.153 | 0.229 |





# Immunological methods commercially available for heterologous protein detection

## **ELISA**

- CP4-EPSPS (RR)
- Cry3Bb1
- Cry1Ab/1Ac
- Cry1F



# **Immunostrips**

- CP4-EPSPS (RR)
- Cry3Bb1
- Cry1Ab/1Ac
- Cry1F
- Cry34Ab1
- Cry9C
- PAT



# New GMOs with more genes and traits: A challenge for detection

Monsanto's NewLeaf Plus® potato variety, which contains a total of eleven different foreign genetic elements- Resistant to Colorado Potato Beetle And Leaf Roll Virus



Figure 1. Schematic structure of an insertion site of NewLeaf Plus®. ori = origin of replication of *E. coli* plasmid pBR322, aad = spectinomycin resistance gene from *E. coli*; RB = right border region of *Agrobacterium tumefaciens* (*A. tum*); 35S = promoter of figwort mosaic virus; PLRV = replicase gene of potato leaf roll virus; E9 = terminator of pea E9 gene; SSU = promoter of Arabidopsis rubisco small subunit gene; CRY = synthetic gene encoding a protein identical to the cry3Aa protein of *Bacillus thuringiensis*; nos = terminator of *Agrobacterium* nopaline synthase gene; EPSPS = 5-enolpyruvylshikimate-3-phosphate synthase gene from *Agrobacterium*; LB = left border region of *Agrobacterium*.

http://www.isb.vt.edu/articles/dec0405.htm



#### **Conclusions**

To detect an un-approved GMO/LMO is a major task and often very difficult

RNAi based GMOs/LMOs have no protein to detect

While DNA based tests can be designed easily, ELISA based test is possible only if the specific antibodies are available

There is a need to constantly up grade the detection methods for new and staked events

